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Welcome, in this lecture we will continue our discussion with virtual memories and caches. 

We will start with a bit of recap from what we discussed in the last class. So, particularly we 

will start by discussing a bit again, on virtually indexed physically tagged caches. We had said 

last day that the problem with physically indexed physically tagged caches was that, the TLB 

comes in the critical path for cache accesses. 

So, therefore, cache access latencies are high because the TLB comes in the middle and we 

cannot access the cache, until the complete physical address is generated. For to do away with 

this, to improve the situation, so, virtually indexed virtually tagged caches, VIVT caches, we 

had proposed and there what happened is that the both the indexing and tagging of the cache 

was done based on virtual addresses ok. So, the logical address was used for both indexing and 

tagging of the cache 

Now, this avoided TLBs to come into the critical path. So, TLB's are no more coming into the 

critical path; however, the problem again it was that both the indexing and tagging because, it 

is done with logical addresses, it has no connection with the physical address and where a 

particular cache block is placed in physical memory. So, the issue is that now the advantage of 

VIVT caches is that so, I don’t have to go into the TLB. So, even if there is a miss of the TLB 

and I have to go to the memory to bring in the physical page number, even that is avoided and 

we don’t need to go into the we don’t need to go into the TLB for that, if the if the data is in 

cache we are fine we are happy. So, we don’t go into the TLB to look for the physical address 

at all. 

However, the problem as we said is that virtual addresses have no connection with physical 

addresses. So, a particular data in cache is now stored only with respect to what the logical 

address says and the logical address of different processes may be same. The physical address 

so, multiple processors have different physical addresses. So, the data corresponding to 

multiple processes will be stored in different locations in the physical memory. So, when I have 
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the cache that indexed and tagged based on physical addresses I don’t have the problem that 

the same cache block can be stored in multiple different locations, or multiple different sets, in 

the cache the same cache block cannot be stored in multiple different sets in the cache. So, the 

same block in physical memory cannot be stored in multiple different sets in the cache. If I am 

address indexing and tagging the cache using physical addresses. 

However because these are virtual addresses so, a block in physical memory can be stored in 

multiple different locations or multiple different sets in the cache. And this is a problem because 

the same virtual address can mean different physical addresses by different processors ok. So, 

therefore, the same cache physical cache block maybe stored in different locations and 

therefore, the cache needs to be flushed, every time there is a context switch and a different 

process comes into the CPU. 

So, when one process is executing on the CPU, for that the for the virtual addresses of that 

process I am accessing the cache using virtual logical address of that processor process and 

now when there is a context don’t a different process comes in and there the virtual address 

will mean entirely different set of physical addresses and therefore, the previous entire cache 

the cache needs to be flushed and, there can be a lot of cold misses; that means, the previous 

data is all rubbed is all deleted from the cache and therefore, when the new process comes in I 

will have nothing in the cache of nothing of the physical memory in cache and therefore, I have 

to repopulate everything in the cache corresponding to that process ok and this will lead to a 

lot of cold misses as it is called ok. Because the cache is cold and I will cold or empty and 

therefore, I have to bring in data from the physical memory into cache and so, that was the 

problem of virtually indexed virtually tagged caches. 

Now virtually indexed physically tagged caches was a compromise between these two. So, in 

virtually indexed physically tagged caches what do we do? We index both the cache and TLB 

concurrently using virtual address bits ok. So, the virtual page number part of the virtual 

address is used to go used to search the TLB for a hit. So, the TLB is fully is fully associative 

and so therefore, or in the all the entries in the TLB will be searched for the virtual page number 

and if the virtual page number is found the corresponding physical page number is taken. 

Now concurrently I will use the physical page offset sorry, the virtual page offset which is same 

as the physical page offset. So, the physical page offset will be used to index the cache and if 

there is a if the physical page offset matches, if the physical page offset sorry I will I will use 
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the index to in I will go use the physical page offset to index the cache and then corresponding 

to that I will try to match the tag at that particular at that particular location that particular 

block, or a particular set of blocks in a set for a match of the physical page number that I got 

as output from the physical page numbers. 

(Refer Slide Time: 07:01) 

 

So, here my TLB has produced a physical page number from here, I am indexing the cache. 

So, I have gone to a particular location and found a certain tag and that tag I have obtained. If 

this tag matches with the physical page number then I have a cache hit. So, why this is a benefit 

this is a benefit because, the cache the cache and the TLB is accessed concurrently not 

sequentially one after another, but concurrently and therefore, I save time; the TLB does not 

come in the critical path. However, if there is a TLB miss this access still has to wait, this 

access still has to wait to get the physical page number from memory back and then only we 

can we can have check for a cache hit. So, therefore, this strategy is helpful when there is a 

TLB hit. 

So, on an average it reduces access times, with respect to with respect to virtually indexed 

virtually tagged sorry with respect to physically indexed physically tagged cache because the 

TLB and cache are accessed concurrently. With respect to virtually indexed virtually tagged 

cache, it is it is not as efficient when one process is running because, if there is a TLB miss I 

have to go to the physical memory; however, if there is a TLB hit I have I can check for the 

cache hit without going into the physical memory and I save time. 
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But this however, this approach avoids the need for need to flush the cache on a context switch 

ok. So, why because the physical page offset and the virtual page offset are same ok. So, 

therefore, when I am accessing the cache with the page offset part only of the virtual page 

number. So, this is the complete virtual address, this is the complete virtual address and I am 

accessing the cache only with the physical page offset part, I am indexing the cache only with 

the physical page offset part, if I am doing this then what essentially is happening is that, I am 

basically indexing the cache using basically using physical addresses only, because the page 

offset part of the virtual address and physical address is same. 

So, if the cache is accessed only using the physical you only using the page offset part of the 

virtual memory, then what happens is that let us say I have the page offset of 12 bits 12 bits. 

So, the page size is 4 KB and let us say my cache block size is 128 bytes. So therefore, I have 

8 × 4, 32 cache blocks 32 blocks per page I have 32 blocks per page. 

Now, each of these 32 blocks will go to a particular location in the cache, depending on what, 

so I have 32 128 bytes ok. So, I have 128 bytes in is the block size. So, this will require 7 bits 

this will require 7 bits and therefore, so this will require 7 bits and the other 5 bits will tell me 

where it will go in the cache ok. So, the cache the cache is no more than 12. So, the cache is 

also 4 KB in size; the cache is 4 KB in size and I know depending on what the other 5 bits are 

so, 7 bits the lower 7 bits are for accessing the cache and the higher significant 5 bits will tell 

me which particular block in the cache, this cache block is going to go, which particular line in 

cache will this particular cache block. 

So, these 7 bits each enumeration of the second bits will identify a particular cache block and 

this cache block will go to a designated location, or designated line in cache depending on the 

value of the more significant of the higher significant 5 bits. Now, therefore, each cache block 

will have a designated location in cache and, the cache block cannot sit cannot be located in to 

multiple locations in the cache, depending on means irrespective of what the virtual address is 

because, the physical page offset and the virtual page is same. 

981



(Refer Slide Time: 12:00) 

 

 (Refer Slide Time: 12:04) 

 

When the situation changes, when we want to increase the size of the cache, now, when we 

want to increase the size of the cache, then I need to use a part of the virtual page number this 

part of the virtual this part these many bits let us say these are 3 bits. So, in addition to the 12 

bits that I have 12 bits that I have in addition to I was using 12 bits. Now in addition to 12 bits 

let us say I use 3 more bits from the virtual page number to index the cache, why because my 

cache was of size. So, I had 12 bits so, 12 bits can access any one of 212 locations. So, any one 

of 212 blocks it can access. 
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A barring the byte offset again, so, ok. So, it will it will it the page of so I will in I will need 

few more bits, I will need 3 more bits. So, 3 more bits I have used to increase the size of the 

cache. Now what is the problem that this has brought into? Now a particular now a particular 

block cache block a particular block in physical memory can sit in multiple locations in the 

cache, why? Because these 3 bits these 3 bits will now depend on what the virtual address says. 

This, previously what was happening I was only the using this physical offset part of the cache. 

And therefore, when I am when I am when I am appending it to the physical page number and 

the physical page offset, I know that corresponding to this physical address, I my cache block 

will sit in a particular set or particular block in the cache only. Now these 3 additional bits have 

created this problem that given for a given physical address depending on what the values of 

these 3 bits are, it can it the same the same cache block the same block in physical memory can 

go into different sets, different sets or different blocks, depending on what type of set 

associative or direct mapped or what it is. So, let us say if we have a set associative cache and 

therefore, the index part will tell me which set which set in cache my particular physical my 

particular physical block will go into. 

Now, this page offset part remains same, but these 3 these 3 bits become different. Now these 

3 bits therefore this, what happens due to this is that 23 or 8 different location 8 different sets 

ok. Now these 3 bits mean 8 different sets for a given this part remaining same, this part of the 

address remaining same, even the physical page number remaining same, when the physical 

page number remains same and this part remains same; that means, I am going to the same 

physical address, I am trying to access the same physical address. 

However, depending on what the value of this 3 bits are the same physical address. So, the 

block which contains this physical address can go into 8 different sets in the cache. So, I will I 

will reiterate based on this physical page number and this page offset let us say a situation, in 

which this physical page number is same and the physical page offset is same and I am trying 

to index the cache using this index. Now this part of the index is going to remain same for this 

physical address. However, for the same physical page the physical page number could be 

different sorry the physical for the same physical page number depending on what these 3 bits 

are the same physical block can go into 8 different sets in cache and this as he had told is the 

synonym problem. 
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And one of the ways in which we had discussed 3 ways, I will today I will just recap the last 

one; one of the ways to handle this synonym problem was page colouring. And we said what 

was page colouring it is to restrict virtual page to physical page frame mapping in OS, we will 

restrict virtual page to physical page frame mapping in the OS. 

So, how will we do this? We will try to make sure that the index that the virtual address 

produces ok. So, virtual address meaning the virtual address meaning this one, this entire thing 

is basically part of the virtual address. This is the virtual address, so, that is why it is a virtually 

indexed cache. So, this is part of the virtual address. So, the index that the virtual address 

produces, we will try to make it same as if the physical add if the in the equal to the index that 

the physical address would create. 

And how will we do that? We will do that using a scheme called page colouring in which all 

physical page frames are coloured. So, how are they coloured. So, now the physical memory if 

we see let us say this is the physical memory and this one is let us say the pages in it these are 

the pages in it, physical memory and these are the pages in it. Now this one will require what 

one this page offset. So, page offset page offset will address each location within this page, 

within each page the page offset can locate. Now which page will be given by the page number?  

Now let us say we coloured the physical memory into 8 colours. So, colouring means I will 

give a unique ID. So, let us say this one is given 0 0 0, this one is given 0 0 1. So, 0 1 0, 0 1 1, 

1 0 0, 1 0 1, 1 1 0, 1 1 1. So, I give 8 different colours. So, now, again for the next set of next 
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set of pages, I will again give colours to it 0 0 0, 0 0 1, 0 1 0, 0 1 1, 0 1 1 and likewise it will 

go on ok. So, I will I will go and colour each page in the in the physical memory. So, statically 

before in the system, I will know that this page has colour 0 0 0, page 2 has colour 0 0 1, page 

3 has colour 0 1 0 likewise. And again this one will have again colour 0 0 0, this one will have 

again colour 0 0 1. So, for each page I will know what is it’s colour ok. 

Now, what will I do is that. So, each cache block within this. So, the page will be composed of 

an integral number of cache blocks. So, in this in this particular page there will be a number of 

blocks. So, not cache block, but number of blocks. So, each page again will have a number of 

blocks like we had said in the previous case that our page had was composed of 32 blocks. So, 

each page had 32 blocks. Now here all these blocks will have a colour of 0 0 1; all these colour 

all these all these blocks in physical memory within this page will also have the same colour 

as the page. 

So, now for each block in physical memory I know what colour it is ok. Now we I will use the 

scheme; a physical page of one colour is mapped to a virtual address by the OS in such a way 

that that a set in cache always gets page frames of the same colour. Now a physical page of one 

colour is mapped to a virtual address; so, this physical page will be mapped to a virtual address 

ok. Now if this page I will always map to a virtual address such that those 3 bits, those 3 bits, 

these 3 bits in a, we in a these 3 bits will also have 0 0 1 ok. 

So, this physical page will be mapped to a virtual will map to such a virtual address, such that 

those 3 bits in a, of the virtual address will have will be 0 0 1 ok. Now what happens if for this 

virtual address therefore, I know that those 3 bits will be 0 0 1; so, the virtual I am restricting 

what, I am restricting during the mapping of the physical. So, for a virtual address I will map a 

physical page frame. 

Now when I am doing this mapping between virtual address to physical address, I will I will 

map such a physical page number to a virtual page number that those for in that virtual page 

number those 3 bits of a will be 0 0 1, if this is the physical page I am referring to. So, only 

those virtual addresses will be able to get these physical page frames, if that virtual address or 

those set of that virtual page number.  

So, this page number will be given to such a virtual page number, in which those 3 bits of a 

will be 0 0 1. So, by this scheme I will always be able to ensure that this page will go to the 

same set in cache. So, when this page goes to the same set in cache, I will be able to avoid the 
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synonym problem. Now, we will quickly study page replacement and go and look at page 

replacement again. So, that we discuss one more important problem which is Belady’s anomaly 

and progress from there. 

(Refer Slide Time: 23:40) 

 

So, we had already told why page replacement is required. 

(Refer Slide Time: 23:41) 

 

And to reduce page fault rates. 
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And we said what reference string are is. So, these are the set of pages that that the that a 

processor is accessing. 

(Refer Slide Time: 23:57) 

 

Then we discussed different page replacement policies, the first one we discussed was first in 

first out, in which the oldest page in physical memory is the one selected for replacement. So, 

the oldest page in physical memory at any given time is used for replacement. 
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And we discussed this we will discuss again with respect to Belady’s anomaly. So, I am not 

going into first in first out. 

(Refer Slide Time: 24:26) 

 

We will look at FIFO issues again with respect to Belady’s anomaly. 
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So, I will not go into this again, for optimal replacement we said that we replace the page which 

will not be referenced for the longest time in future. So, I will have to know using an oracle as 

to which pages will be accessed in future, this is not possible and hence this optimal page 

replacement policy is not realizable in practice, but we use this to measure or evaluate and 

compare other algorithms against, how good it is. Because we cannot do better than the optimal, 

we will use it to compare other algorithms with respect to this one. 

(Refer Slide Time: 25:07) 

 

989



Then we came into least recently used and we said that in least recently used, we replace that 

page in memory that has not been accessed for the longest time in the past. So, at any point in 

time I will then the page frames which page frames will be contained, the page the pages in the 

physical memory will be the one which is most recently used. So, the least recently used one 

will be will be will be replaced, when I need to replace a page. So, when I need to replace a 

page when do I need to replace the page? When there are no free frames in memory and to get 

a new page into the physical memory, I have to replace an existing page in the page in the 

physical memory, send it to the secondary memory, if it is dirty and then bring in a new page. 

So, we said that LRU was the is the optimal algorithm is an optimal algorithm, when with the 

restriction that I can look back in time, but I cannot look forward; that means, this is this is a 

this is practical because, looking back is possible; looking forward in what will happen in future 

is not possible, but what has happened we already know, therefore looking back in future this 

is the optimal algorithm. Why? Because it always keeps the most recently more most recently 

used pages at any given time. 

(Refer Slide Time: 26:38) 

 

So, we looked into least recently used, so, I will not go into that anymore, but we will study 

what were the problems with we also saw this what are the problems with LRU and we said 

that the problem was in practical implementation, why is such a thing why is it difficult to 

implement in practice because, at each point in time for each page in the physical memory, I 

have to keep when it was accessed because, I am I am I am evicting the page, I am replacing 
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the page which is least recently used. So, I need to know among all pages in physical memory 

which one is the least recently used. 

So, what the logical way of doing that? I will have to keep a global clock and whenever memory 

is being accessed I will I will take the stamp of the global clock and put that stamp on this 

physical page. So, when I need to evict pages, I will I will I will have a timestamp associated 

with each physical page in memory, whenever the page is accessed I provide it a time stamp I 

provide the time at which it was accessed and therefore, I will know which one among all the 

pages in physical memory, which one was least recently used, which was accessed farthest 

back in time. And that will be evicted. So, this will this has a lot of hardware cost because and 

also overheads because, at each access I have to update the value of this time stamp 

corresponding to that page. And this is hard. 

So, anyhow the solutions are this so, I keep the hardware clock ticks on every memory 

reference. So, this is this keeps global time. So, with respect to memory reference for each 

memory reference irrespective of which process does this reference, I keep a global clock and 

I go on incrementing a global clock. Now the value of this global clock is the time stamp which 

is attached to a page whenever it is referenced and the page with the smallest time value is 

replaced. 

Now this is a very costly solution as we said; a simpler solution is this: We keep a stack of 

references and the stack is maintained as a doubly linked list and, on each reference to a page 

we what do we do? So, when a page is referenced and it is found in physical memory, it will 

be in a certain position in the stack. So, I take that take this take this reference this page and 

the node in the stack corresponding to this page I take it out and put it on the top of the stack. 

So, this will require the updation of the 6 pointers. And now at any point in time because, 

whatever when whenever a page is being accessed I am taking that page out and putting on top 

of the stack, now what is happening is that when so, what is happening is that when I need to 

replace a page, the page which is at the bottom of the stack is a least recently used one and that 

is replaced. 

991



(Refer Slide Time: 30:07) 

 

So, both techniques require additional hardware and memory because memory references are 

a very frequent phenomena. It is the overhead, the overhead if we implement it in software in 

software means whenever, there is a memory reference I have to go to the OS and update either 

I have to do a stack operation, or I have to do more costly continuously I have to do or I have 

to do I have to update the timestamp corresponding to that page. 

Now, in the first approach when I am using counters, what happens is that when I need to 

replace a page I have to search all my timestamps corresponding to all pages to find the find 

the page with the least value of the timestamp, which is very costly. Now when I am using a 

stack at each memory reference, I have to take that node from the stack and put it on the top of 

the stack. If this one has a slightly higher overhead possibly than the counter one than the 

counter one; that means, just updating the timestamps, but when I am I need to replace a page 

the stack is lower overhead that stack has lower overhead, why? Because, we do not need to 

search the entire all pages in physical memory to find the least timestamp page. 

And that I do not need to do. I will just go to the bottom of the stack and evict that node out 

ok. So, the so during the replacement stack is better; however, for both I need to implement 

both stack and this counter one in hardware memory. So, both these techniques therefore, 

require extra hardware as memory references are a very frequent phenomena it is impractical 

to invoke the OS on every memory reference.  
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